
1 Introduction 

Protection of critical infrastructures (e.g., electrical 
power grids, communication networks) has become an 
increasingly significant concern in the public and private 
sectors. Critical infrastructures involve multi-
dimensional, highly complex collections of technologies, 
processes, and people, and as such, are vulnerable to 
catastrophic failures (intentional or unintentional) on 
many levels. A well-documented example can be seen in 
the August 2003 blackout in the north-eastern U.S. and 
eastern Canada [13]. A series of unintentional events led 
to cascading failures across 263 power plants. Moreover, 
failure in the electrical power infrastructure had serious 
impacts on other critical infrastructures.  

In order both to guard against and respond to critical 
infrastructure failures, multi-dimensional infrastructure 
modelling and simulation has been proposed as a way to 
support analysis and decision-making [2, 3, 4, 7, 11]. In 
this context geographic relationships provide a coherent 
foundation for the integration and visualization of 
multiple infrastructures, as well as for scenario scoping 
and impact analysis. As part of spatial decision support 
in GIScience, Andrienko et al. [1] have noted the need 
for cross-disciplinary research, and this is especially true 
for CI analytics. In our research, we focus on CI 
planning and decision-making efforts in the aftermath of 
a disaster from a recommender systems perspective.  

We have developed an innovative approach to 
modelling critical infrastructures for decision-making 
support during reconstitution efforts in response to 

infrastructure disruptions [14]. By modelling the impact 
of infrastructure elements, both within and across 
infrastructures, we can recommend focus areas for 
reconstitution resources across different stakeholders in 
the context of their current goals. Our framework has 
been implemented in a prototype Decision 
Recommendation Tool (DRT) called the “Critical 
Infrastructure Explorer” (CIE) that utilizes an interactive 
geovisualization interface to provide a natural context 
for infrastructure analysis support. 

In order to evaluate our approach, we conducted a user 
study with system experts and GIS analysts. This helped 
us determine the advantages and disadvantages of such a 
system in order to understand the validity of our 
approach. The user study collected performance data as 
users ran through several disablement analysis scenarios 
separately with the CIE and commonly used GIS tools. 
ArcGIS with the Utility Network Analyst extension was 
selected as the comparison point based on feedback from 
our system experts about tools they employed for CI 
analysis. For this paper we will refer to out of the box 
ArcGIS tools as Standard GIS (STDGIS). We then 
performed quantitative analyses comparing results for 
the two platforms in terms of effectiveness measures for 
end users. This paper begins with an overview of our CI 
decision support approach, describes our user study, and 
presents our study results, discussion and conclusions. 
 
 
2 CI Decision Support Approach 

User Study Analysis of a Geovisualization Decision Support 
Environment for Critical Infrastructure Recovery 

 Okan Pala 
University of North 

Carolina at Charlotte 
9201 University City 

Blvd. Charlotte NC 28223 
Charlotte, NC, USA 

opala@uncc.edu 

David Wilson 
University of North 

Carolina at Charlotte 
9201 University City 

Blvd. Charlotte NC 28223 
Charlotte, NC, USA 

davils@uncc.edu 

 

 

Abstract 

Critical Infrastructures (CI) are vulnerable to potentially catastrophic failures on many levels, especially when cascading disablements 
have escalating impacts across multiple connected infrastructures. In responding to outages, such cross-infrastructure effects can make 
analysis for decision makers and responders far more complex. To facilitate recovery in the dynamic context of such scenarios, decision 
makers need to utilize specialized decision support tools to assist in prioritizing alternatives. We have developed a recommender system 
based framework for CI decision support, focused on CI recovery. It models impacts of infrastructure elements, both within and across 
infrastructures, in order to recommend focus areas for reconstitution resources. Our system utilizes an interactive geovisualization interface 
to provide a natural context for infrastructure analysis support. This paper presents a user study evaluation of our approach, comparing its 
effectiveness to standard GIS tools that are used for CI analysis. Results show that our approach improves interaction quality and efficiency, 
as well as reducing cognitive load. 
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Our approach for CI decision support is grounded in a 
framework for prioritizing infrastructure elements based 
on potential impacts – recommending high-impact 
infrastructure elements to consider in planning resource 
allocation to CI recovery efforts. As illustrated in Figure 
1, this framework is comprised of four primary 
components: 

• Target model defines individual infrastructure 
knowledge, cross-infrastructure dependency knowledge, 
and the knowledge necessary to enable the metric 
assessment of desired outcomes;  

• Simulation engine calculates effects within and 
across infrastructures based on initial conditions and 
perturbations; 

• User model defines general task goal categories for 
individual users, their specific category weightings and 
geographic scope of interest; 

• Recommender engine maps user goals to metric 
assessment in the context of modelling and simulation to 
prioritize the impact of infrastructure elements. 

 
Figure 1 - Recommendation Framework 

 
Source: [14] 

 
 

2.1 Decision Recommendation Tool: CIE 

At the start of a simulation, the user sets the initial state 
of the system to represent the failed infrastructure 
elements in the current scenario. The CIE models 
resulting disablements through the initial CI network and 
linked CI networks that depend on service from the 
initial network. It also relates each network node to 
target layer components in order to determine the effect 
of disablement of each network node (e.g., population 
affected). Coupling this with cascading disablement 
simulation provides an indication of the overall effect of 
each initial disabled point’s effect on the ground.  

The CIE affords an interactive interface enabling the 
user to explore various cross-infrastructure scenarios, 
visualize the effects of disablements, and thereby explore 
the best options for CI reconstitution. This includes 

simulation animations, tabular data, network table of 
contents, and three information tabs (Figure 2):  

“Disablements” shows network disablements in a tree-
view structure,  

“Options” shows disablements and details in tabular 
form. Details can be clicked to initiate related animations 
on the map (see Figure 3). A summary is also provided 
for each initial disabled network element, showing the 
effect of its enablement on target service layers. For 
example, if node #15 is enabled then electrical service 
would be restored for approximately 15,000 people and 
communications (dependent on electric service) for 
approximately 39,000 people. 

“Network Detail” enables the user to click for detailed 
information on individual nodes in the networks. 

 
Figure 2 – CIE Interface Details 

 
 

Figure 3 - On Screen Outage Simulation with CIE 

 
 

 
3 Study Design 

To evaluate our approach we have conducted a user 
study with system experts and GIS analysts. The study 
compares our implemented DRT approach (CIE) with 
out-of-the-box industry standard GIS tools (STDGIS), 
which are often employed by analysts for CI support, as 
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indicated by our study experts. Such controlled studies 
typically compare novel tools or techniques to state of 
the art [8, 9]. For example [10] compared three tree 
visualization tools, space tree, hyperbolic and window 
explorer. For this study we selected ESRI ArcGIS 
Desktop software products including Utility Network 
Analyst as the baseline for comparison (STDGIS). 

 Our hypothesis is that a DRT for CI recovery based on 
our framework (CIE) is more efficient and effective for 
multi-infrastructure reconstitution analysis than using 
standard GIS tools (STDGIS). More specifically, given 
the same scenario, decision makers can make decisions 
with less time and less cognitive load using CIE.  

For each participant we recorded the screen, user voice 
and user video with Morae usability software. Users 
were asked to complete an exit survey on tool use, 
cognitive load, user preference, and general feedback. 
Users were also asked to fill out the NASA TLX Mental 
Demand evaluation questionnaire twice, once for each 
tool in the same context. 
 
 
3.1 Participants 

Our user base consists of: employees of one of the US 
National Research Laboratories who have been working 
on CI related projects at least last five years, as well as 
UNC Charlotte staff and student GIS users who are 
proficient in GIS theory and usage of GIS tools. 
Participants were recruited to gain insight both into the 
decision makers’ approach and the approach that GIS 
analysts would take to make recommendations to 
decision makers. 

We recruited 5 system experts from national labs and 
10 GIS users from UNC Charlotte. Out of 15 participants 
13 had at least three or more years of GIS experience. 
More than half of all the users defined themselves as 
experts in GIS. For our study, domain experts are 
considered to be individuals who have been working 
professionally with critical infrastructure analysis (our 
national lab subjects). As employees of a federal national 
lab these individuals have been providing support to real 
decision makers throughout the U.S. in emergency 
situations involving critical infrastructures. GIS users are 
then the students and professionals who are proficient in 
GIS and therefore are qualified to play a “GIS Analyst” 
role with training in CI analysis that we provided. 

We selected a within subject study design because we 
are comparing the performance and experience of the 
same group of users in different scenarios with two 
different tools, and because our targeted user population 
is small. We counter-balanced the presentation of the 
interfaces allowing half to be presented with STDGIS 
first (Group A, 8 participants) and the other half with 
CIE first (Group B, 7 participants). We have equally 
assigned system experts to our counter-balanced 
participant sample. 
 
 
3.2 Evaluation 

To evaluate system effectiveness, we considered task 
efficiency and outcome quality. We also considered 
cognitive load, which is important for improving 
decision quality for decision makers [12]. Quantitatively 
we measured: time spent on each task, rate of outcome 
correctness, and rate of analysis correctness. These were 
measured and validated through analysis of recorded 
participant sessions. To measure cognitive load we 
utilized the NASA Task Load Index (TLX) tool [5,6]. 
 
 
3.3 Experiment Setup 

In order to familiarize users with the software tools in 
the study, each participant was provided an initial 
training session on a sample CI outage scenario covering 
cascades and cross infrastructure effects. We first drew 
an example scenario on paper – one network with two 
initial disabled points. Then we showed the participants 
how the service areas are utilized to determine the 
buildings that would be affected by these outages. Then 
we drew the second network elements overlaying the 
first outage and showed participants how to determine 
the second network outages based on the first network’s 
service areas. Next we cascaded down the second 
network outage and showed how those would be related 
the number of buildings in the service areas of the 
disabled second network elements. Based on this we 
created a table that lists the first network disabled points 
and overall effect of each of those in the buildings with 
respect to type of service being disrupted. After the 
paper disablement scenario demonstration we ran 
through an outage scenario once with STDGIS and once 
with our CIE. These example scenarios had one initial 
disabled point on the first network and two interacting 
infrastructure networks.  

Users were then asked to work through four outage 
scenarios at increasing levels of complexity. Complexity 
was set to be similar at each level but with different 
initial disablements. We applied four levels of 
complexities, so users worked through eight different 
scenarios. Users were instructed to act as the GIS analyst 
in an outage-emergency situation where they are 
required to provide a report to the Decision Maker (DM) 
on the priority of the initial disabled points in importance 
of their effect in each specific situation. This way the 
DM could allocate appropriate resources to the CI 
elements with greatest effect on target layer elements for 
optimum recovery. The network data employed is 
adapted from UNC Charlotte Critical Infrastructure 
network data. For this experiment we used CI network 
data, buildings and building center point layers (Figure 
4). 

The first scenario included one network (water) and 
two network elements disabled initially. The second 
scenario included one network (electric power) and six 
network elements disabled initially. The third scenario 
included two networks (water, gas) and two elements 
initially disabled on each network, with the water 
network interacting with gas in a source-sink 
relationship (e.g., pump cooling). The last scenario had 
the electrical power network interacting with the steam 
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network in a source-sink relationship with six initial 
disabled elements. Users were asked to determine which 
of the initial disabled network elements should be 
restored first to provide most benefit. All the initial 
disablements were on the first network, which was 
presumed to be providing services essential for elements 
of the second network to function. For purposes of this 
study, we presumed a one-way source sink relationship 
between networks.  

 
Figure 4 – Scenario Critical Infrastructure Overview 

 

 
 
4 Results 

Results for successful task completion and correctness of 
supporting analysis are shown in Figure 5a and Figure 
5b. As shown in Figure 5a, participants who worked 
through the scenarios in CIE completed the tasks with 
correct conclusions based on correct analysis almost in 
all cases. However, as shown in Figure 5b, participants 
working with STDGIS reached correct answers 
significantly less frequently. For Tasks 1 and 2, only 
70% and 60% of participants completed successfully 
with correct analysis and only 30% in Tasks 3 and 4. For 
Tasks 2 and 4 in Figure 5b where the participants are 
prioritizing among six alternatives, 10% and 50% of the 
participants respectively did not reach the correct 
conclusion for various reasons. Some participants carried 
over the disablement to the second network, but 
neglected to cascade the disablement through the second 
network, whereas some simply lost track of details in the 
process. Even for straightforward tasks 1 and 3 (2 initial 
disablements), when using the STDGIS tools 30% of the 
participants on Task 1 and 70% of the participants on 
Task 3 did not have the correct numbers even though 
they reached the correct overall conclusion (Figure 5b). 

Figure 5 - Distribution of successful task completion 
among participants using (a) CIE, (b) STDGIS 

 
 
 

Results for average task completion time are shown in 
Figure 6 (overall) and Figure 7 (only correct conclusions 
with correct analysis). Tasks were set up with increasing 
complexity and therefore difficulty. Overall, as the 
participants progressed through the tasks it took them 
longer to make the connections and come up with a 
conclusion. Completion time in Task 2 is lower for CIE. 
Our observations indicate that users spent additional 
time exploring and familiarizing themselves with the 
CIE tool upon first use, accounting for additional time 
spent on a simpler task. 

Task completion time increases in direct proportion to 
complexity for STDGIS tools, while completion time for 
CIE remains relatively flat. In the most complex 
scenario, STDGIS takes almost three times as long. This 
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is even more apparent if we use the data from only those 
who reached the correct conclusion with using correct 
numbers (Figure 7). Solutions with STDGIS remain a 
more manually driven process where the participants 
have to pay a lot of attention to the task at hand to 
produce the correct numbers so that they can base their 
prioritization decision on correct numbers.  
 

Figure 6 – Average time spent on each task in minutes 
including data from all GIS user participants 

 

 
 
 

Figure 7 - Average time on task: Only the participants 
who reached the correct result using correct numbers 
 

 
 
Results for cognitive load are shown in Table 1. We 

found a significant difference between the average TLX 
score using CIE (M=21.26; SD=12.22) and STDGIS 
(M=65.26; SD=13.21); t (14)= -9.032, p= 0.00. The TLX 
score of 21.26 for CIE is significantly smaller than the 
TLX score for STDGIS with a TLX score of 65.26 
where they both have similar standard deviations. We 
can conclude that participants’ mental demand was 
significantly lower with CIE than STDGIS tools. This 
interpretation is also supported by comments from users’ 
exit interviews where they indicated that they had to 
concentrate much harder to get to a conclusion using 
STDGIS tools compared to CIE, and there was much 

greater room for mistakes and confusion even if they 
keep their attention at highest level.    

We also found a significant difference between the 
average TLX scores for STDGIS tools, based on 
experiment type. Group A has lower TLX score than 
Group B for STDGIS tools: Group A: M=58.54, 
SD=13.56, Group B: 72.95, SD=7.94; t(11.49)=-2.547, 
p=.026. In other words, while evaluating STDGIS tool 
for mental demand, participants didn’t find performing 
the tasks as equally demanding if they performed the 
task with STDGIS tools first and than a similar one with 
CEI. We can interpret this as by performing the task first 
with CIE they experienced a tool that provides easier 
interaction and better visualization.  And therefore doing 
a similar task with a tool that requires more manual 
interaction appeared to be taking a greater mental toll, 
hence higher TLX score. Moreover, if the participants 
first performed the tasks with STDGIS tools and than 
with CIE, they indicated higher mental demand required 
for CIE. Thus the users seem to be mentally fatigued 
upon starting to use CIE if they performed the task with 
STDGIS first. 
 

 
Table 1 – Group TLX Statistics Based on Experiment 

Type	
  

 
Group N Mean Standard 

Deviation 
Standard 

Error Mean 
A 8 23.08 14.69 5.19 TLX: 

CIE B 7 19.19 9.34 3.53 
A 8 58.54 13.57 4.80 TLX: 

STDGIS B 7 72.95 7.94 3.00 
 

5 Conclusion 

Results for user task efficiency, task completion, and 
cognitive load consistently support our hypothesis: given 
the same scenario, decision makers can make better 
decisions with less time and less cognitive load using 
CIE. Applying our approach for CI reconstitution, users 
successfully completed more scenarios more accurately 
(Figure 5a and 5b), in less time (Figure 6, Figure 7), and 
with lower cognitive load (Table 1). Overall, we believe 
that such approaches are essential to address the 
information overload problem in complex, multi-
dimensional analysis for CI in general and reconstitution 
efforts in particular. Results from this user study provide 
a baseline for our investigation of recommender based 
geovisualization tools for CI decision support. Future 
work will study how refinements on underlying decision 
support strategies, interface and interaction affordances, 
and individual user goal weighting impact the 
effectiveness of CI analysis. 
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